Objective Bayes model selection in probit models.
نویسندگان
چکیده
We describe a new variable selection procedure for categorical responses where the candidate models are all probit regression models. The procedure uses objective intrinsic priors for the model parameters, which do not depend on tuning parameters, and ranks the models for the different subsets of covariates according to their model posterior probabilities. When the number of covariates is moderate or large, the number of potential models can be very large, and for those cases, we derive a new stochastic search algorithm that explores the potential sets of models driven by their model posterior probabilities. The algorithm allows the user to control the dimension of the candidate models and thus can handle situations when the number of covariates exceed the number of observations. We assess, through simulations, the performance of the procedure and apply the variable selector to a gene expression data set, where the response is whether a patient exhibits pneumonia. Software needed to run the procedures is available in the R package varselectIP.
منابع مشابه
The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملA Validation Test Naive Bayesian Classification Algorithm and Probit Regression as Prediction Models for Managerial Overconfidence in Iran's Capital Market
Corporate directors are influenced by overconfidence, which is one of the personality traits of individuals; it may take irrational decisions that will have a significant impact on the company's performance in the long run. The purpose of this paper is to validate and compare the Naive Bayesian Classification algorithm and probit regression in the prediction of Management's overconfident at pre...
متن کاملVariance Component Testing in Generalized Linear Mixed Models
Generalized linear mixed models (GLMM) are used in situations where a number of characteristics (covariates) affect a nonnormal response variable and the responses are correlated. For example, in a number of biological applications, the responses are correlated due to common genetic or environmental factors. In many applications, the magnitude of the variance components corresponding to one or ...
متن کاملA New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier
With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...
متن کاملAn Empirical Comparison of Methods for Computing Bayes Factors in Generalized Linear Mixed Models
Generalized linear mixed models (GLMM) are used in situations where a number of characteristics (covariates) affect a nonnormal response variable and the responses are correlated due to the existence of clusters or groups. For example, the responses in biological applications may be correlated due to common genetic factors or environmental factors. The clustering or grouping is addressed by int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics in medicine
دوره 31 4 شماره
صفحات -
تاریخ انتشار 2012